AA273
Download as PDF
State Estimation and Filtering for Robotic Perception
Aeronautics and Astronautics
ENGR - School of Engineering
Course Description
Kalman filtering, recursive Bayesian filtering, and nonlinear filter architectures including the extended Kalman filter, particle filter, and unscented Kalman filter. Observer-based state estimation for linear and non-linear systems. Examples from aerospace, including state estimation for fixed-wing aircraft, rotorcraft, spacecraft, and planetary rovers, with applications to control, navigation, and autonomy.
Grading Basis
RLT - Letter (ABCD/NP)
Min
3
Max
3
Course Repeatable for Degree Credit?
No
Course Component
Lecture
Enrollment Optional?
No
Does this course satisfy the University Language Requirement?
No
Programs
AA273
is a
completion requirement
for: